CLASS XII GUESS PAPER MATHS

M.M. 100

TIME: 3 HOURS

SECTION A [1x 4=4]

1.If $|A|=4$. Find the value of $|\operatorname{adj}(\operatorname{adj} A)|$.
2.Find the slope of the tangent to the curve $y=x+2 x-1$ at $(1,2)$.
3. Find the value of $\int_{-\pi}^{\pi} \sin ^{5} x \cos ^{3} x d x$.
4. Find the value of $(\vec{a} . \hat{\imath}) \hat{\imath}+(\vec{a} . \hat{\jmath}) \hat{\jmath}+(\vec{a} . \hat{k}) \hat{k}$

OR
Find the value of ' p ' if the vectors lines $\vec{a}=\hat{\imath}+2 \hat{\jmath}-p \hat{k}$ and $\vec{b}=4 \hat{\imath}-2 \hat{\jmath}-\hat{k}$

SECTION B [2x8=16]

5. Evaluate $\int \sin \frac{\left(2 \tan ^{-1} x\right)}{1+x^{2}} d x$
6. Evaluate $\int_{0}^{\frac{\pi}{4}} \sqrt{1-\sin 2 x} \mathrm{dx}$ OR

7 Form the differential equation by eliminating c which is an arbitrary constant. $\mathrm{c}(y+c)^{2}=x^{3}$
OR
Show that $y_{2}+4 y=0$ if $y=A \cos 2 x+B \sin 2 x$
8. Find the area of the quadrilateral whose vertices are $(1,-1,1)(2,3,1)(1,2,3)$ and $(0,-2,3)$ on a plane.
9. Given $p(A+B)=\frac{5}{6}, p(A B)=\frac{1}{3} P\left(B^{C}\right)=\frac{1}{2}$. Find $p(A)$ and $p(B)$

A black and a red die are rolled. Find the conditional probability of obtaining the sum 8 ,given that the red die resulted in a number less than 4.

chatguess	CBSEGuess.com

10. A pair of dice is thrown 7 times. What is the probability of getting a sum 7 atmost 7 times.
11. Let R be a relation on the set A of order pair of integers defined by $(x, y)=(u, v)$ iff $x v=y u$. Show that R is an equivalence relation.
12. If $\left|\begin{array}{cc}2 x+5 & 3 \\ 5 x+2 & 9\end{array}\right|=0$ find the value of x

OR
If $\lambda \neq 0$ and $\left|\begin{array}{ccc}x+\lambda & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda\end{array}\right|=0$, then find the value of x .

SECTION C [4x11=44]

13 Evaluate $\int \frac{d x}{(\sin x-2 \cos x)(2 \sin x+\cos x)}$
OR
Evaluate $\int_{0}^{\frac{\pi}{4}} \sin 2 x \log (\tan x) d x$
14. Solve $x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1,0<x<\frac{\pi}{2}$

OR
Solve: $x \frac{d y}{d x}-y=\sqrt{x^{2}+y^{2}}$
15. Evaluate $\int \frac{\tan ^{-1} x}{(1+x)^{2}} d x$
16. Whether the lines $\vec{r}=\hat{\imath}+\hat{\jmath}-\hat{k}+s(\widehat{3 \imath}-\hat{\jmath})$ and $\vec{r}=4 \hat{\imath}-\hat{k}+t(2 \hat{\imath}+\hat{k})$ will intersect or not.

If intersect find the point of intersection.
17Let * be a binary operation on N, given by a $b=$ H.C.F. of a, b for all $a, b \in N$. Check whether * ia commutative and associative.
18. Solve: $\quad \sin ^{-1} \frac{3 x}{5}+\sin ^{-1} \frac{4 x}{5}=\sin ^{-1} x$

OR
Show that $\quad \cos \left(2 \tan ^{-1} 1 / 7\right)=\sin \left(4 \tan ^{-1}\right)$
18. Prove that $\left|\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ b a & c^{2}+a^{2} & b c \\ c a & c b & a^{2}+b^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$

chse	

21. Find k , if $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\frac{\log (1+x)-\log (1-x)}{k_{\text {, if }} \mathrm{x} x=0}\end{array}\right.$ if $x \neq 0, \quad$ is continuous at $\mathrm{x}=0$.
22. Find $\frac{d y}{d x}$ if $\mathrm{y}=\cos \mathrm{x}^{\mathrm{x}}+\sin \mathrm{x}$.
23. Find the value of of p, for which the curve $x^{2}=9 p(9 p-y)$ and $x^{2}=p(y+1)$ cut each other orthogonally.

SECTION D [6x6=36]

24. If $A=\left|\begin{array}{ccc}1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1\end{array}\right|$, find the A^{-1} and solve $x-2 y=10,2 x-y-z=8$ and $-2 y+z=7$

OR

If $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1\end{array}\right]$, find A^{-1} by using elementary transformation method.
25. Find the area of the region bounded by $x^{2}+y^{2}=25,4 y=\left|4-x^{2}\right|$ and $x=0$, which lies on the Ist quadrant.

OR

Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ and the line $x=\frac{a}{\sqrt{2}}$.
26. A variable plane which remain at constant distant $3 p$ from the origin cuts the coordinate axes A, B, C. Show that the locus of the centroid of the triangle $A B C$ is $\mathrm{X}^{-2}+\mathrm{Y}^{2}+\mathrm{Z}^{-2}=\mathrm{P}^{-2}$.
27. A young man rides his motorcycle at $25 \mathrm{~km} / \mathrm{Hr}$, he had to spend Rs . 2 per km on petrol. If he drive faster $40 \mathrm{~km} / \mathrm{Hr}$ he spends Rs. 5 per km. H has Rs. 100 to spend on petrol. Find the maximum distance he can travel in one hour. Solve graphically.
28. An anti-aircraft gun can take a maximum of four shots at an enemy plane. The probability that of hitting the plane at $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$, and $4^{\text {th }}$ shots are $0.6,0.5,0.4$ and 0.3 respectively. What is the probability that the gun strikes the plane?
29. Find the area of the greatest rectangle that can be inscribed in an ellips $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

MR.P.M. SAHU

ADMINISTRATOR
VIKASH GROUP OF INSTITUTIONS

Close	
CBSEGuess.com	

BARGARH

MOB:7008028852

